Tetrahedron Letters No.43, pp. 4269-4272, 1967. Pergamen Press Ltd. Printed in Great Britain.

BRIDGEHEAD POLYFLUORO-GRIGNARD REAGENTS.

Bу

S.F. CAMPBELL, J.M. LEACH, R. STEPHENS and J.C. TATLOW.

(Department of Chemistry, University of Birmingham, P. D. B. 363, Edgbaston, Birmingham, 15.). (Received in UK 20 July 1967)

<u>UNDECAFLUOROBICYCLO[2,2,1]HEPTYL LITHIUM</u> (II), formed from $1\underline{H}$ -undecafluorobicyclo[2,2,1]heptane (I) and methyl lithium in ether at -50°,¹ reacts readily with bromine and with iodine to give the corresponding bromide (III) (68%) and iodide (IV) (73%); these in turn readily give saturated bridgehead Grignard reagents (V) and (VI), compounds of a type not known hitherto².

The fodide (IV) with activated magnesium in other at -50° for 2 hr. and at -20° for 4 hr. gave a moderate yield of the Grignard reagent (VI), as indicated by hydrolysis to lH-undecafluorobicyclo[2,2,1]heptene (I) (36%); unchanged (IV) (50%) was also present. However, (IV) with 1 mol. of magnesium at 35° for 1 hr. gave, after hydrolysis, 1-iodononafluorobicyclo[2,2,1]hept-2-ene (VIII) (45%), unchanged (IV) (25%), and small amounts of lH-nonafluorobicyclo[2,2,1]hept-2-ene(XIII) and lH-undecafluerobicyclo[2,2,1]heptane (I). With an excess of magnesium at 35° for 4 hr., (IV) gave, after hydrolysis, only 1H-nonafluorobicyclo[2,2,1]hept-2-ene (XIII) (83%). Likewise, the 1-bromocompound (III) with an excess of magnesium at 35° for 4 hr. gave, after hydrolysis, only the 1H-olefin (XIII).

The above observations can be rationalised in terms similar to those used to explain the production in ether at room temperature ¹ of 1-bromoor 1-iodo-nonafluorobicyclo-[2,2,1]hept-2-ene, (VII) and (VIII), from undecafluorobicyclo[2,2,1]heptyl lithium (II), formed using methyl lithium prepared from methyl bromide or methyl iodide, respectively. Elimination from (V) or (VI)

4269

<u>All unmarked substituents are fluorine</u>. <u>Reagents</u>: 1,MeLi; 2,Br₂ or I₂; 3,Mg; 4,H₃0⁺ of magnesium halogeno-fluoride (a well-known reaction of perfluoroalkyl Grignard reagents ³) gives a transient bridgehead olefin or di-radical ¹ (IX), to which the rapid addition of a bromide or an iodide ion affords the unstable intermediates (X) and (XI). The former then undergoes a facile β -elimination to give the olefin (VII) or (VIII), which is isolated when 1 mol. of magnesium is used, but which will react in turn with magnesium, if an excess is present, to form an unseturated Grignard reagent (XII). This was found ¹ to be stable in refluxing ether, and so on hydrolysis will give the known 1- $\frac{1}{2}$ -nonafluorobicyclo[2,2,1]-hept-2-ene (XIII). The extent of decomposition of the Grignard reagent (VI) after varying times of reflux suggested a higher stability than that of the lithio-compound (II). This would be expected from its less ionic character; ease of elimination of fluoride ion should increase with increase in carbonionic character.

A parallel study was based on $1\frac{H}{2},4\frac{H}{2}$ -decefluorobicyclo[2,2,1]heptane (XIV). Thus, methyl lithium was added to an ethereal solution of (XIV) at -55° until methane evolution ceased and bromine added to give $1\frac{H}{2}$ -4-bromo- and 1,4dibromo-decafluorobicyclo[2,2,1]heptane (XVII) and (XIX),(12 and 45%, respectively); iodine addition gave the $1\frac{H}{2}$,4-iodo-and 1,4,-di-iodo-analogues (XVIII) and (XX) (54 and 7%, respectively).

In contrast to the saturated 4-fluoro-substituted Grignard reagents (V) and (VI), those derived from compounds (XVII), (XVIII) and (XIX) were stable in refluxing ether and, after hydrolysis, only 1H, 4H-decafluorobicyclo[2,2,1] heptane (XIV) could be isolated.

The lower stability of the 4-fluoro-substituted Grignard reagents (V) and (VI), <u>cf</u>. (XXI)-(XXIII), is thought to arise from the transmission through the central molecular cavity 2,4 of the dipole associated with the carbon-fluorine bond of the other bridgehead carbon. This will inductively enhance the ionic character of the carbon-magnesium bond, which in turn will favour loss of fluoride ion from C₂.

Another significant effect, due apparently to a bridgehead fluorine, is found in the deuteriation of compounds (I) and(XIV). Though both were deuteriated in the presence of base,¹ with deuterium oxide alone at room temperature no deuteriation of the 1H,4H-compound (XIV) could be detected by mass spectrometry after 27 days, whereas the 1H- compound (I) was 49% deuteriated after 5 days. Quantitative measurements of their acidities also show a substantial difference.⁵

Compounds (I),(III),(V),(VII),(VIII),(XIII),(XIV) and (XVII) -(XX) had correct elemental analyses and consistent IR-, NMR- and mass-spectra.

REFERENCES

 R.C. Fort, Jr., and P. Von R. Schleyer, <u>Advances in Alicyclic Chemistry</u>, Vol. I, p. 336, (Ed. H. Hart and G.J. Karabatsos), Academic Press.(1966) A.L. Henne and W.C. Francis, <u>J.Amer.Chem.Soc.</u> 73, 3518 (1951); R.N. Haszeldine, <u>J. Chem.Soc.</u>, 3423 (1952). M.J.S. Dewar and P.J. Grisdale, <u>J. Amer.Chem.Soc.</u>, <u>B4</u>, 3539,3548,(1962). A. Streitwieser, Jr., and D. Holtz, Private communication. 	1.	S.F. Campbell, R. Stephens and J.C. Tatlow, <u>Tetrahedron</u> <u>21</u> ,2997(1965).
 Vol. I, p. 336, (Ed. H. Hart and G.J. Karabatsos), Academic Press.(1966) 3. A.L. Henne and W.C. Francis, <u>J.Amer.Chem.Soc.</u> 73, 3518 (1951); R.N. Haszeldine, <u>J. Chem.Soc.</u>, 3423 (1952). 4. M.J.S. Dewar and P.J. Grisdale, <u>J. Amer.Chem.Soc.</u>, <u>84</u>, 3539,3548,(1962). 5. A. Streitwieser, Jr., and D. Holtz, Private communication. 	2.	R.C. Fort,Jr., and P. Von R. Schleyer, <u>Advances in Alicyclic Chemistry</u> ,
 A.L. Henne and W.C. Francis, <u>J.Amer.Chem.Soc.</u> 73, 3518 (1951); R.N. Haszeldine, <u>J. Chem.Soc.</u>, 3423 (1952). M.J.S. Dewar and P.J. Grisdale, <u>J. Amer.Chem.Soc.</u>, <u>84</u>, 3539,3548,(1962). A. Streitwieser, Jr., and D. Holtz, Private communication. 		Vol. I, p. 336, (Ed. H. Hart and G.J. Karabatsos), Academic Press.(1966)
 R.N. Haszeldine, <u>J. Chem.Soc.</u>, 3423 (1952). M.J.S. Dewar and P.J. Grisdale, <u>J. Amer.Chem.Soc.</u>, <u>B4</u>, 3539,3548,(1962). A. Streitwieser, Jr., and D. Holtz, Private communication. 	3.	A.L. Henne and W.C. Francis, <u>J.Amer.Chem.Soc.</u> <u>73</u> , 3518 (1951);
 M.J.S. Dewar and P.J. Grisdale, <u>J. Amer.Chem.Soc.</u>, <u>B4</u>, 3539,3548,(1962). A. Streitwieser, Jr., and D. Holtz, Private communication. 		R.N. Haszeldine, <u>J. Chem.Soc.</u> , 3423 (1952).
5. A. Streitwieser, Jr., and D. Holtz, Private communication.	4.	M.J.S. Dewar and P.J. Grisdale, <u>J. Amer.Chem.Soc.</u> , <u>84</u> , 3539,3548,(1962).
	5.	A. Streitwieser, Jr., and D. Holtz, Private communication.